Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
medRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778260

RESUMO

Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) associated with relevant left ventricular (LV) structural or functional traits. Amongst the common variant HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants cause HCM. Mendelian randomization analyses support a causal role of increased LV contractility in both obstructive and non-obstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, the findings significantly increase our understanding of the genetic basis and molecular mechanisms of HCM, with potential implications for disease management.

2.
Eur J Hum Genet ; 31(5): 541-547, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36380086

RESUMO

The p.Val142Ile variant in transthyretin (encoded by the TTR gene) is the most common genetic cause of transthyretin-related amyloidosis. This allele is particularly prevalent in communities ofAfrican descent compared with populations of different ancestries, where its frequency is two orders of magnitude lower. For this reason, p.Val142Ile has always been considered an "African" variant, with limited studies performed on individuals of European descent. However, recent reports of higher-than-expected prevalence in European-ancestry populations question the African specificity of this allele. Here we show that the high recurrence of p.Val142Ile in central Italy is due to a founder effect and not to recent admixture from African populations, highlighting how this may be the case in other communities. This suggests a probable underestimate of the global prevalence of p.Val142Ile, and further emphasizes the importance of routine inclusion of TTR in gene panels used for clinical genetic testing in hypertrophic cardiomyopathy (independently of the patient's geographical origin), that transthyretin-related amyloidosis can mimic.


Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatia Hipertrófica , Humanos , Pré-Albumina/genética , Neuropatias Amiloides Familiares/diagnóstico , Neuropatias Amiloides Familiares/epidemiologia , Neuropatias Amiloides Familiares/genética , Testes Genéticos , Cardiomiopatia Hipertrófica/genética
3.
Genet Med ; 23(5): 856-864, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33500567

RESUMO

PURPOSE: To characterize the genetic architecture of left ventricular noncompaction (LVNC) and investigate the extent to which it may represent a distinct pathology or a secondary phenotype associated with other cardiac diseases. METHODS: We performed rare variant association analysis with 840 LVNC cases and 125,748 gnomAD population controls, and compared results to similar analyses on dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). RESULTS: We observed substantial genetic overlap indicating that LVNC often represents a phenotypic variation of DCM or HCM. In contrast, truncating variants in MYH7, ACTN2, and PRDM16 were uniquely associated with LVNC and may reflect a distinct LVNC etiology. In particular, MYH7 truncating variants (MYH7tv), generally considered nonpathogenic for cardiomyopathies, were 20-fold enriched in LVNC cases over controls. MYH7tv heterozygotes identified in the UK Biobank and healthy volunteer cohorts also displayed significantly greater noncompaction compared with matched controls. RYR2 exon deletions and HCN4 transmembrane variants were also enriched in LVNC, supporting prior reports of association with arrhythmogenic LVNC phenotypes. CONCLUSION: LVNC is characterized by substantial genetic overlap with DCM/HCM but is also associated with distinct noncompaction and arrhythmia etiologies. These results will enable enhanced application of LVNC genetic testing and help to distinguish pathological from physiological noncompaction.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Cardiopatias Congênitas , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Testes Genéticos , Humanos
4.
J Am Heart Assoc ; 9(8): e015473, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32306808

RESUMO

Genetic testing for hypertrophic cardiomyopathy (HCM) is an established clinical technique, supported by 30 years of research into its genetic etiology. Although pathogenic variants are often detected in patients and used to identify at-risk relatives, the effectiveness of genetic testing has been hampered by ambiguous genetic associations (yielding uncertain and potentially false-positive results), difficulties in classifying variants, and uncertainty about genotype-negative patients. Recent case-control studies on rare variation, improved data sharing, and meta-analysis of case cohorts contributed to new insights into the genetic basis of HCM. In particular, although research into new genes and mechanisms remains essential, reassessment of Mendelian genetic associations in HCM argues that current clinical genetic testing should be limited to a small number of validated disease genes that yield informative and interpretable results. Accurate and consistent variant interpretation has benefited from new standardized variant interpretation guidelines and innovative approaches to improve classification. Most cases lacking a pathogenic variant are now believed to indicate non-Mendelian HCM, with more benign prognosis and minimal risk to relatives. Here, we discuss recent advances in the genetics of HCM and their application to clinical genetic testing together with practical issues regarding implementation. Although this review focuses on HCM, many of the issues discussed are also relevant to other inherited cardiac diseases.


Assuntos
Cardiomiopatia Hipertrófica/genética , Testes Genéticos , Variação Genética , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/terapia , Predisposição Genética para Doença , Humanos , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco
5.
Int J Cardiol ; 300: 191-195, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371117

RESUMO

BACKGROUND: Differential diagnosis of genetic causes of left ventricular hypertrophy (LVH) is crucial for disease-specific therapy. We aim to describe the prevalence of Cardiac Amyloidosis (CA) among patients ≥40 years with an initial diagnosis of HCM referred for second opinion to national cardiomyopathy centres. METHODS: Consecutive patients aged ≥40 years referred with a tentative HCM diagnosis in the period 2014-2017 underwent clinical evaluation and genetic testing for HCM (including trans-thyretin-TTR). Patients with at least one red flag for CA underwent blood/urine tests, abdominal fat biopsy and/or bone-scintigraphy tracing and eventually ApoAI sequencing. RESULTS: Out of 343 patients (age 60 ±â€¯13 years), 251 (73%) carried a likely/pathogenic gene variant, including 12 (3.5%) in the CA-associated genes TTR (n = 11) and ApoAI (n = 1). Furthermore, 6 (2%) patients had a mutation in GLA. Among the remaining, mutation-negative patients, 26 with ≥1 CA red-flag were investigated further: 3 AL-CA and 17 wild-type-TTR-CA were identified. Ultimately, 32(9%) patients were diagnosed with CA. Prevalence of CA increased with age: 1/75 (1%) at age 40-49, 2/86 (2%) at age 50-59, 8/84 (9%) at age 60-69, 13/61 (21%) at age 70-79, 8/31 (26%) at age ≥80 (p for trend <0.01). CONCLUSIONS: Among patients referred with and initial diagnosis of HCM, CA was the most common unrecognized mimic (9% prevalence) and increased with age (from 1% at ages 40-49 years to 26% >80 years). Age at diagnosis should be considered one of the most relevant red flags for CA in patients with HCM phenotypes; however, there is no clear age cut-off mandating scintigraphy and other second level investigations in the absence of other features suggestive of CA.


Assuntos
Amiloidose/diagnóstico por imagem , Amiloidose/epidemiologia , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/epidemiologia , Encaminhamento e Consulta/tendências , Centros de Atenção Terciária/tendências , Adulto , Idoso , Amiloidose/terapia , Cardiomiopatia Hipertrófica/terapia , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência
6.
Genet Med ; 21(2): 284-292, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29875424

RESUMO

PURPOSE: Genetic testing in hypertrophic cardiomyopathy (HCM) has long relied on Sanger sequencing of sarcomeric genes. The advent of next-generation sequencing (NGS) has catalyzed routine testing of additional genes of dubious HCM-causing potential. We used 19 years of genetic testing results to define a reliable set of genes implicated in Mendelian HCM and assess the value of expanded NGS panels. METHODS: We dissected genetic testing results from 1,198 single-center HCM probands and devised a widely applicable score to identify which genes yield effective results in the diagnostic setting. RESULTS: Compared with early panels targeting only fully validated sarcomeric HCM genes, expanded NGS panels allow the prompt recognition of probands with HCM-mimicking diseases. Scoring by "diagnostic effectiveness" highlighted that PLN should also be routinely screened besides historically validated genes for HCM and its mimics. CONCLUSION: The additive value of expanded panels in HCM genetic testing lies in the systematic screening of genes associated with HCM mimics, requiring different patient management. Only variants in a limited set of genes are highly actionable and interpretable in the clinic, suggesting that larger panels offer limited additional sensitivity. A score estimating the relative effectiveness of a given gene's inclusion in diagnostic panels is proposed.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Testes Genéticos , Adulto , Idoso , Estudos de Coortes , Feminino , Testes Genéticos/métodos , Testes Genéticos/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sarcômeros/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...